Abstract
A small-sized sonochemical reactor in which the absolute value of the sound pressure amplitude can be estimated from the vibration velocity of the transducer was investigated. The sound pressure distribution in the reactor and the relationship between the vibration velocity and the sound pressure amplitude were derived through Helmholtz wave equation. The reactor consists of a bolt-clamped Langevin transducer and a rectangular cell with a tungsten reflector. A 3λ/4-standing-wave-field was generated in the reactor to simplify the sound pressure distribution. The sound pressure distribution was measured from the optical refractive index change of water using a laser interferometer. The experimental and theoretical results showed a good agreement in the absolute value of the sound pressure amplitude, and it was confirmed that the sound pressure in the sonochemical reactor can be estimated from the input current of the vibrator.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.