Abstract

Two different methods for estimation, imputation and prediction for the functional linear model with scalar response when some of the responses are missing at random (MAR) are developed. The simplified method consists in estimating the model parameters using only the pairs of predictors and responses observed completely. In addition the imputed method consists in estimating the model parameters using both the pairs of predictors and responses observed completely and the pairs of predictors and responses imputed with the parameters estimated with the simplified method. The two methodologies are compared in an extensive simulation study and the analysis of two real data examples. The comparison provides evidence that the imputed method might have better performance than the simplified method if the numbers of functional principal components used in the former strategy are selected appropriately.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.