Abstract

We study smooth backfitting when there are errors-in-variables, which is motivated by functional additive models for a functional regression model with a scalar response and multiple functional predictors that are additive in the functional principal components of the predictor processes. The development of a new smooth backfitting technique for the estimation of the additive component functions in functional additive models with multiple functional predictors requires to address the difficulty that the eigenfunctions and therefore the functional principal components of the predictor processes, which are the arguments of the proposed additive model, are unknown and need to be estimated from the data. The available estimated functional principal components contain an error that is small for large samples but nevertheless affects the estimation of the additive component functions. This error-in-variables situation requires to develop new asymptotic theory for smooth backfitting. Our analysis also pertains to general situations where one encounters errors in the predictors for an additive model, when the errors become smaller asymptotically. We also study the finite sample properties of the proposed method for the application in functional additive regression through a simulation study and a real data example.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.