Abstract

This work presents an algorithm for estimation-based model predictive control with objective prioritization such that distinct objectives may be defined for mutually exclusive operational regions. The objective prioritization algorithm is built by using logical conditions that define regions of operation which are incorporated into the objective function, thus allowing smooth transitions between a bank of objectives. The control objective prioritization is cast in the framework of model predictive control that is coupled with an extended Kalman filter for estimation of critical yet unmeasured state variables. The algorithm is applied to the challenging control problem of an industrial superheater (SH)-reheater (RH) system of a natural gas combined cycle plant under load following operation where smooth transitions among various control objectives is desired – operation under nominal conditions, avoidance of spraying to saturation at the inlet of the SH and RH systems, and avoidance of main steam temperature excursions. The results from the estimator framework are compared with the industrial data from an operating power plant. The control algorithm is evaluated by simulating a servo control problem and disturbance rejection scenarios as expected under load-following operation of the power plant. This algorithm is generic and can be applied to accomplish local control policies for safety, economics, quality control, state constraints, and others. Topical HeadingProcess Systems Engineering

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.