Abstract
This paper considers estimation and testing problems for partial functional linear models when the covariates in the non-functional linear component are measured with additive error. A corrected profile, least-squares based, estimation procedure is developed for the parametric component. Asymptotic properties of the proposed estimators are established under some regularity conditions. To test a hypothesis on the parametric component, a statistic based on the difference between the corrected residual sums of squares under the null and alternative hypotheses is proposed; its limiting null distribution is shown to be a weighted sum of independent standard χ12 variables. Simulation studies are conducted to demonstrate the performance of the proposed procedure and a real example is analyzed for illustration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.