Abstract
We consider the estimation and hypothesis testing problems for the partial linear regression models when some variables are distorted with errors by some unknown functions of commonly observable confounding variable. The proposed estimation procedure is designed to accommodate undistorted as well as distorted variables. To test a hypothesis on the parametric components, a restricted least squares estimator is proposed under the null hypothesis. Asymptotic properties for the estimators are established. A test statistic based on the difference between the residual sums of squares under the null and alternative hypotheses is proposed, and we also obtain the asymptotic properties of the test statistic. A wild bootstrap procedure is proposed to calculate critical values. Simulation studies are conducted to demonstrate the performance of the proposed procedure, and a real example is analyzed for an illustration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.