Abstract
AbstractMore flexible semiparametric linear‐index regression models are proposed to describe the conditional distribution. Such a model formulation captures varying effects of covariates over the support of a response variable in distribution, offers an alternative perspective on dimension reduction and covers a lot of widely used parametric and semiparameteric regression models. A feasible pseudo likelihood approach, accompanied with a simple and easily implemented algorithm, is further developed for the mixed case with both varying and invariant coefficients. By justifying some theoretical properties on Banach spaces, the uniform consistency and asymptotic Gaussian process of the proposed estimator are also established in this article. In addition, under the monotonicity of distribution in linear‐index, we develop an alternative approach based on maximizing a varying accuracy measure. By virtue of the asymptotic recursion relation for the estimators, some of the achievements in this direction include showing the convergence of the iterative computation procedure and establishing the large sample properties of the resulting estimator. It is noticeable that our theoretical framework is very helpful in constructing confidence bands for the parameters of interest and tests for the hypotheses of various qualitative structures in distribution. Generally, the developed estimation and inference procedures perform quite satisfactorily in the conducted simulations and are demonstrated to be useful in reanalysing data from the Boston house price study and the World Values Survey.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have