Abstract

Mixture-of-experts provide flexible statistical models for a wide range of regression (supervised learning) problems. Often a large number of covariates (features) are available in many modern applications yet only a small subset of them is useful in explaining a response variable of interest. This calls for a feature selection device. In this paper, we present new group-feature selection and estimation methods for sparse mixture-of-experts models when the number of features can be nearly comparable to the sample size. We prove the consistency of the methods in both parameter estimation and feature selection. We implement the methods using a modified EM algorithm combined with proximal gradient method which results in a convenient closed-form parameter update in the M-step of the algorithm. We examine the finite-sample performance of the methods through simulations, and demonstrate their applications in a real data example on exploring relationships in body measurements.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.