Abstract

In face-to-face conversations, speakers are continuously checking whether the listener is engaged in the conversation. When the listener is not fully engaged in the conversation, the speaker changes the conversational contents or strategies. With the goal of building a conversational agent that can control conversations with the user in such an adaptive way, this study analyzes the user's gaze behaviors and proposes a method for predicting whether the user is engaged in the conversation based on gaze transition 3-Gram patterns. First, we conducted a Wizard-of-Oz experiment to collect the user's gaze behaviors as well as the user's subjective reports and an observer's judgment concerning the user's interest in the conversation. Next, we proposed an engagement estimation algorithm that estimates the user's degree of engagement from gaze transition patterns. This method takes account of individual differences in gaze patterns. The algorithm is implemented as a real-time engagement-judgment mechanism, and the results of our evaluation experiment showed that our method can predict the user's conversational engagement quite well.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.