Abstract
The paper presents a model for estimating the transfer fees of professional footballers. We seek to improve on the literature in two dimensions. First, we utilise advanced player performance metrics to better capture the playing ability of footballers. Second, we adopt machine learning algorithms to improve out-of-sample prediction accuracy. The model proves to be a considerable improvement on linear regression, and the advanced performance metrics further improve the predictions. We use the model to identify value-for-money transfers, before assessing the past records of clubs in identifying value-for-money and find that, Liverpool and Atlético Madrid, for example, are successful at identifying value-for-money, whilst Manchester United and Barcelona are not.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.