Abstract

ABSTRACT Information about the state of the Arctic sea ice is becoming increasingly important. This paper describes an approach for automatic retrieval of daily thin sea ice thickness maps around Svalbard. The algorithm uses thermal satellite imagery from MODIS to estimate the surface temperature of the ice and further uses a thermal model of the ice surface to estimate the thickness of the sea ice. The approach is usable for thin sea ice, up to ca. 50 cm thick, during cold weather (freezing) conditions and without cloud cover present. The algorithm is compared with helicopter-borne electromagnetic ice thickness measurements. The comparison yields increasing root-mean-square deviation (RMSD) for thicker ice. The lowest RMSD found is 8.7 cm for ice thickness in the range 10 cm < hi ≤ 20 cm. The highest RMSD found is 25.2 cm for ice thickness in the range 30 cm < hi ≤ 40 cm. The bias shows no such trend, and the overall bias is found to be −5.5 cm. The results show that this is a promising approach, allowing monitoring of thin sea ice thickness at relatively higher spatial resolution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call