Abstract

Abstract: Regionalized networks, also known as micro grids, must be able to operate independently by cutting off their connection to the main grid in order for a system to stay stable. Customers' reliability can be raised by providing a more robust power supply. Due to reversed energy flow from distributed generator units, regional fluctuations, temporary micro grid modes, significant frequency discrepancies in electrically isolated mode operation, as well as financial and supply demand uncertainties, consistency, dependability, and security are in fact the main problems with micro grids. The system is more unstable when electrical energy is transmitted from the AC side to the DC side and from the DC side to the AC side, despite the fact that strengthening the stability of the hybrid micro grid is their main objective. Therefore, a variety of circuit breakers, buck boost converters, grid bidirectional converters, and intermediate IC (Interlinking converter) are utilized to preserve the stability of the hybrid micro grid. This article explains how to build a bidirectional power flow through an interactive converter using stability evaluation using MATLAB. Simulation may improve the circuit's performance for the best outcomes achievable. The most stable hybrid micro grid findings were shown. An interlinking converter is utilized in this work to improve micro grid stability while power is flowing via the AC and DC grids in both directions. The findings might be acquired using a MATLAB simulation. This method also has the advantage of reducing the amount of time needed for the system to stabilize. Consequently, the system will be more dependable and will provide excellent supplies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.