Abstract
A mathematical model was developed to estimate the efficacy of coagulation–flocculation treatment for removing neutral hydrophobic organic chemicals from raw drinking water. The model assumed that the only significant removal mechanism was the destabilization and settling of organic matter containing sorbed anthropogenic organic compounds. The model was validated with standard jar tests using compounds with a range of hydrophobicities (logKow=1.89to5.48), including contaminant candidate list chemicals, pesticides, pharmaceuticals, and endocrine disrupting chemicals. Final concentrations of test compounds after coagulation and flocculation were in good agreement with model estimations for synthetic waters composed of Aldrich (Milwaukee, WI) humic acid solutions. The final compound concentrations in coagulated natural waters from two drinking water reservoirs were about 80% lower than those estimated with the model. Overestimations of treated water concentrations by the model were attributed to an increase in sorption by natural organic matter when coiled in aluminum hydroxide flocs, compared to sorption to dispersed natural organic matter in untreated water.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have