Abstract

Electroconvulsive therapy (ECT) is an effective and widely used treatment for major depressive disorder, in which a brief electric current is passed through the brain to trigger a brief seizure. This study aims to identify seizure quality rating by utilizing a set of seizure parameters. We used 750 ECT EEG recordings in this experiment. Four seizure related parameters, (time of slowing, regularity, stereotypy and post-ictal suppression) are used as inputs to two classifiers, decision tree and fuzzy inference system (FIS), to predict seizure quality ratings. The two classifiers produced encouraging results with error rate of 0.31 and 0.25 for FIS and decision tree, respectively. The classification results show that the four seizure parameters provide relevant information about the rating of seizure quality. Automatic scoring of seizure quality may be beneficial to clinicians working in this field.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.