Abstract

AbstractThere is a duality between the surplus process of classical risk theory and the single-server queue. It follows that the probability of ruin can be retrieved from a single sample path of the waiting time process of the single-server queue. In this paper, premiums are allowed to vary. It has been shown that the stationary distribution of a corresponding storage process is equal to the survival probability (with variable premiums). Thus by simulation of the corresponding storage process, the probability of ruin can be obtained. The special cases where the surplus earns interest and the premiums are charged by layers are considered and illustrated numerically.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.