Abstract
Easley et al. (1996) have proposed an empirical methodology to estimate the probability of informed trading (PIN). This approach has been employed in a wide range of applications in market microstructure, corporate finance, and asset pricing. To estimate the model, a researcher only needs the number of buyer- and seller-initiated trades. This information, however, is generally unobservable and has to be inferred from trade-classification algorithms, which are known to be inaccurate. In this paper, we show analytically that inaccurate trade classification leads to downward biased PIN estimates and that the magnitude of the bias is related to a security's trading intensity. Simulation results and empirical evidence based on order and transaction data from the New York Stock Exchange are consistent with this argument. We propose a data-based adjustment procedure that substantially reduces the misclassification bias.
Submitted Version (
Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have