Abstract

BackgroundCystic echinococcosis (CE) and alveolar echinococcosis (AE) are highly endemic in Xiji County of Ningxia Hui Autonomous Region (NHAR) in China where the control campaign based on dog de-worming with praziquantel has been undertaken over preceding decades. This study is to determine the current prevalence of Echinococcus granulosus and E. multilocularis in domestic dogs and monitor the echinococcosis transmission dynamics.MethodsStudy villages were selected using landscape patterns (Geographic Information System, GIS) for Echinococcus transmission “hot spots”, combined with hospital records identifying risk areas for AE and CE. A survey of 750 domestic dogs, including copro-sampling and owner questionnaires, from 25 selected villages, was undertaken in 2012. A copro-multiplex PCR assay was used for the specific diagnosis of E. granulosus and E. multilocularis in the dogs. Data analysis, using IBM SPSS Statistics, was undertaken, to compare the prevalence of the two Echinococcus spp. in dogs between four geographical areas of Xiji by the χ2 test. Univariate analysis of the combinations of outcomes from the questionnaire and copro-PCR assay data was carried out to determine the significant risk factors for dog infection.ResultsThe highest de-worming rate of 84.0% was found in the northwest area of Xiji County, and significant differences (P < 0.05) in the de-worming rates among dogs from the four geographical areas of Xiji were detected. The highest prevalence (19.7%, 59/300) of E. multilocularis occurred in northwest Xiji, though the highest prevalence (18.1%, 38/210) of E. granulosus occurred in southwest Xiji. There was no significant difference (P > 0.05) in the prevalence of E. granulosus in dogs from the northwest, southwest, northeast, and southeast of Xiji, but there were significant differences (P < 0.05) between dogs infected with E. multilocularis from the four areas. None of the other independent variables was statistically significant.ConclusionsThe results from this study indicate a high prevalence of both E. granulosus and E. muiltilocularis in dogs in Xiji County, NHAR. Transmission of E. multilocularis was more impacted by geographical risk-factors in Xiji County than that of E. granulosus. Dogs have the potential to maintain the transmission of both species of Echinococcus within local Xiji communities, and the current praziquantel dosing of dogs appears to be ineffective or poorly implemented in this area.

Highlights

  • Cystic echinococcosis (CE) and alveolar echinococcosis (AE) are highly endemic in Xiji County of Ningxia Hui Autonomous Region (NHAR) in China where the control campaign based on dog de-worming with praziquantel has been undertaken over preceding decades

  • The results from this study indicate a high prevalence of both E. granulosus and E. muiltilocularis in dogs in Xiji County, NHAR

  • As part of an ongoing project of echinococcosis control in NHAR, we report on a survey of domestic dogs that was conducted in Xiji County in 2012, an area known to be highly endemic for both human AE and CE, to monitor the prevalence and transmission dynamics of E. granulosus and E. multilocularis

Read more

Summary

Introduction

Cystic echinococcosis (CE) and alveolar echinococcosis (AE) are highly endemic in Xiji County of Ningxia Hui Autonomous Region (NHAR) in China where the control campaign based on dog de-worming with praziquantel has been undertaken over preceding decades. Human cystic echinococcosis (CE) and alveolar echinococcosis (AE), caused by the larval stages of Echinococcus granulosus and E. multilocularis, respectively, result from the unintentional ingestion of Echinococcus eggs released in the faeces of definitive hosts. Other suitable carnivores, are the usual definitive hosts of E. granulosus, whilst a number of ungulate species (goats, sheep, pigs, cattle, etc.) can act as intermediate hosts [1, 2]. Domestic dogs can serve as definitive hosts of E. multilocularis if they become infected through the ingestion of small mammalian species (mainly rodents) infected with metacestodes, perpetuating a synanthropic cycle [3, 4]. Depending on the species and strain (genotype), and on the susceptibility of the host, the adult tapeworm reaches sexual maturity approximately 4 to 6 weeks after infection [5]. Herbivores are usually exposed to infection from the pasture or from water supplies which may be contaminated by direct access of infected carnivores, where people and their domestic animals share drinking water, which is accessible to dogs and/ or wild animals [6, 7]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call