Abstract

BackgroundHuman echinococcoses are parasitic helminth infections that constitute a serious public health concern in several regions across the world. Cystic (CE) and alveolar echinococcosis (AE) in China represent a high proportion of the total global burden of these infections. This study was conducted to predict the spatial distribution of human seropositivity for Echinococcus species in Xiji County, Ningxia Hui Autonomous Region (NHAR), with the aim of identifying communities where targeted prevention and control efforts are required.MethodsBayesian geostatistical models with environmental and demographic covariates were developed to predict spatial variation in the risk of human seropositivity for Echinococcus granulosus (the cause of CE) and E. multilocularis (the cause of AE). Data were collected from three cross-sectional surveys of school children conducted in Xiji County in 2002–2003, 2006–2007 and 2012–2013. Environmental data were derived from high-resolution satellite images and meteorological data.ResultsThe overall seroprevalence of E. granulosus and E. multilocularis was 33.4 and 12.2%, respectively, across the three surveys. Seropositivity for E. granulosus was significantly associated with summer and winter precipitation, landscape fragmentation variables and the extent of areas covered by forest, shrubland, water and bareland/artificial surfaces. Seropositivity for E. multilocularis was significantly associated with summer and winter precipitations, landscape fragmentation variables and the extent of shrubland and water bodies. Spatial correlation occurred over greater distances for E. granulosus than for E. multilocularis. The predictive maps showed that the risk of seropositivity for E. granulosus expanded across Xiji during the three surveys, while the risk of seropositivity for E. multilocularis became more confined in communities located in the south.ConclusionsThe identification of high-risk areas for seropositivity for these parasites, and a better understanding of the role of the environment in determining the transmission dynamics of Echinococcus spp. may help to guide and monitor improvements in human echinococcosis control strategies by allowing targeted allocation of resources.

Highlights

  • Human echinococcoses are parasitic helminth infections that constitute a serious public health concern in several regions across the world

  • Sample description The final data set consisted of 434 school locations and a total of 5110 schoolchildren aged 6–18 years who were screened for human echinococcoses

  • Seropositivity for E. granulosus became more common in the second and third survey with seroprevalences of 30.9 and 45.6% compared to seroprevalences of E. multilocularis of 12.8% and 8.4%, respectively (Table 3)

Read more

Summary

Introduction

Human echinococcoses are parasitic helminth infections that constitute a serious public health concern in several regions across the world. Cystic (CE) and alveolar echinococcosis (AE) in China represent a high proportion of the total global burden of these infections. The number of new cases of CE is 188,000 every year, which represents a human health burden of 184,000 disability adjusted life years (DALYs) [1]. In China, the nationally estimated numbers of CE and AE cases explain 40 and 95% of the total global burden of the infections, respectively [2, 4]. The second survey of parasitic diseases conducted in China in 2001– 2004 found that approximately 380,000 people were affected by these two types of echinococcoses, and 50 million were at risk of infection nationwide [5]. Regional and local variation in echinococcosis risk is high, with the diseases being prevalent among poor pastoral minority groups [2, 8, 9]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call