Abstract

This paper deals with the maximum likelihood estimation of parameters for a doubly truncated normal distribution when the truncation points are known. We prove, in this case, that the MLEs are nonexistent (become infinite) with positive probability. For estimators that exist with probability one, the class of Bayes modal estimators or modified maximum likelihood estimators is explored. Another useful estimating procedure, called mixed estimation, is proposed. Simulations compare the behavior of the MLEs, the modified MLEs, and the mixed estimators which reveal that the MLE, in addition to being nonexistent with positive probability, behaves poorly near the upper boundary of the interval of its existence. The modified MLEs and the mixed estimators are seen to be remarkably better than the MLE

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.