Abstract
This paper examines the estimation of the order of an autoregressive model using the minimum description length principle. A closed form for an approximation of the parametric complexity of the autoregressive model class is derived by exploiting a relationship between coefficients and partial autocorrelations. The parametric complexity over the complete parameter space is found to diverge. A model selection criterion is subsequently derived by bounding the parameter space, and simulations suggest that it compares well against standard autoregressive order selection techniques in terms of correct order identification and prediction error.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.