Abstract
This paper is about the estimation of the maximum expected value of an infinite set of random variables.This estimation problem is relevant in many fields, like the Reinforcement Learning (RL) one.In RL it is well known that, in some stochastic environments, a bias in the estimation error can increase step-by-step the approximation error leading to large overestimates of the true action values. Recently, some approaches have been proposed to reduce such bias in order to get better action-value estimates, but are limited to finite problems.In this paper, we leverage on the recently proposed weighted estimator and on Gaussian process regression to derive a new method that is able to natively handle infinitely many random variables.We show how these techniques can be used to face both continuous state and continuous actions RL problems.To evaluate the effectiveness of the proposed approach we perform empirical comparisons with related approaches.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the AAAI Conference on Artificial Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.