Abstract

Traffic signal control can be naturally regarded as a reinforcement learning problem. Unfortunately, it is one of the most difficult classes of reinforcement learning problems owing to its large state space. A straightforward approach to address this challenge is to control traffic signals based on continuous reinforcement learning. Although they have been successful in traffic signal control, they may become unstable and fail to converge to near-optimal solutions. We develop adaptive traffic signal controllers based on continuous residual reinforcement learning (CRL-TSC) that is more stable. The effect of three feature functions is empirically investigated in a microscopic traffic simulation. Furthermore, the effects of departing streets, more actions, and the use of the spatial distribution of the vehicles on the performance of CRL-TSCs are assessed. The results show that the best setup of the CRL-TSC leads to saving average travel time by 15% in comparison to an optimized fixed-time controller.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.