Abstract

The epidemiology of malaria makes surveillance-based methods of estimating its disease burden problematic. Cartographic approaches have provided alternative malaria burden estimates, but there remains widespread misunderstanding about their derivation and fidelity. The aims of this study are to present a new cartographic technique and its application for deriving global clinical burden estimates of Plasmodium falciparum malaria for 2007, and to compare these estimates and their likely precision with those derived under existing surveillance-based approaches. In seven of the 87 countries endemic for P. falciparum malaria, the health reporting infrastructure was deemed sufficiently rigorous for case reports to be used verbatim. In the remaining countries, the mapped extent of unstable and stable P. falciparum malaria transmission was first determined. Estimates of the plausible incidence range of clinical cases were then calculated within the spatial limits of unstable transmission. A modelled relationship between clinical incidence and prevalence was used, together with new maps of P. falciparum malaria endemicity, to estimate incidence in areas of stable transmission, and geostatistical joint simulation was used to quantify uncertainty in these estimates at national, regional, and global scales. Combining these estimates for all areas of transmission risk resulted in 451 million (95% credible interval 349-552 million) clinical cases of P. falciparum malaria in 2007. Almost all of this burden of morbidity occurred in areas of stable transmission. More than half of all estimated P. falciparum clinical cases and associated uncertainty occurred in India, Nigeria, the Democratic Republic of the Congo (DRC), and Myanmar (Burma), where 1.405 billion people are at risk. Recent surveillance-based methods of burden estimation were then reviewed and discrepancies in national estimates explored. When these cartographically derived national estimates were ranked according to their relative uncertainty and replaced by surveillance-based estimates in the least certain half, 98% of the global clinical burden continued to be estimated by cartographic techniques. Cartographic approaches to burden estimation provide a globally consistent measure of malaria morbidity of known fidelity, and they represent the only plausible method in those malaria-endemic countries with nonfunctional national surveillance. Unacceptable uncertainty in the clinical burden of malaria in only four countries confounds our ability to evaluate needs and monitor progress toward international targets for malaria control at the global scale. National prevalence surveys in each nation would reduce this uncertainty profoundly. Opportunities for further reducing uncertainty in clinical burden estimates by hybridizing alternative burden estimation procedures are also evaluated.

Highlights

  • Estimating the disease burden posed by malaria is an important public health challenge [1,2,3,4,5,6,7,8,9]

  • We used a previously defined Bayesian geostatistical model that took an assembly of space–time distributed P. falciparum parasite rate (PfPR) surveys and generated realisations of continuous age-standardized prevalence within the limits of stable transmission [41]

  • Of the 87 P. falciparum malaria endemic country (PfMEC), we have identified seven countries that are relatively wealthy and have specified a goal of P. falciparum elimination where case-detection systems are an integral part of the control strategies [58,59,60]: Panama, Belize, Tajikistan, Kyrgyzstan, Iran, Saudi Arabia, and South Africa (Figure 2)

Read more

Summary

Introduction

Estimating the disease burden posed by malaria is an important public health challenge [1,2,3,4,5,6,7,8,9]. The aims of this study are to present a new cartographic technique and its application for deriving global clinical burden estimates of Plasmodium falciparum malaria for 2007, and to compare these estimates and their likely precision with those derived under existing surveillance-based approaches. Malaria is a parasitic disease that is transmitted to people through the bite of an infected mosquito. These insects inject a parasitic form known as sporozoites into people, where they replicate briefly inside liver cells. The merozoites replicate rapidly before bursting out and infecting more red blood cells. This increase in the parasitic burden causes malaria’s characteristic symptoms—debilitating and recurring fevers and chills. Effective treatment with antimalarial drugs helps to reduce malaria transmission

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.