Abstract

In areas where levels of transmission of Plasmodium falciparum are high and stable, the age-related acquisition of high-level immunoglobulin G (IgG) antibodies to preerythrocytic circumsporozoite protein (CSP) and liver-stage antigen 1 (LSA-1) has been associated with protection from clinical malaria. In contrast, age-related protection from malaria develops slowly or not at all in residents of epidemic-prone areas with unstable low levels of malaria transmission. We hypothesized that this suboptimal clinical and parasitological immunity may in part be due to reduced antibodies to CSP or LSA-1 and/or vaccine candidate blood-stage antigens. Frequencies and levels of IgG antibodies to CSP, LSA-1, thrombospondin-related adhesive protein (TRAP), apical membrane antigen 1 (AMA-1), erythrocyte binding antigen 175 (EBA-175), and merozoite surface protein 1 (MSP-1) were compared in 243 Kenyans living in a highland area of unstable transmission and 210 residents of a nearby lowland area of stable transmission. Levels of antibodies to CSP, LSA-1, TRAP, and AMA-1 in the oldest age group (>40 years) in the unstable transmission area were lower than or similar to those of children 2 to 6 years old in the stable transmission area. Only 3.3% of individuals in the unstable transmission area had high levels of IgG (>2 arbitrary units) to both CSP and LSA-1, compared to 43.3% of individuals in the stable transmission area. In contrast, antibody levels to and frequencies of MSP-1 and EBA-175 were similar in adults in areas of stable and unstable malaria transmission. Suboptimal immunity to malaria in areas of unstable malaria transmission may relate in part to infrequent high-level antibodies to preerythrocytic antigens and AMA-1.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call