Abstract
The geometric median, also called L 1 -median, is often used in robust statistics. Moreover, it is more and more usual to deal with large samples taking values in high dimensional spaces. In this context, a fast recursive estimator has been introduced by Cardot et al. (2013). This work aims at studying more precisely the asymptotic behavior of the estimators of the geometric median based on such non linear stochastic gradient algorithms. The L p rates of convergence as well as almost sure rates of convergence of these estimators are derived in general separable Hilbert spaces. Moreover, the optimal rates of convergence in quadratic mean of the averaged algorithm are also given.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.