Abstract
We present a straightforward approach for estimating the final black hole spin of a binary black hole coalescence with arbitrary initial masses and spins. Making some simple assumptions, we estimate the final angular momentum to be the sum of the individual spins plus the orbital angular momentum of a test particle orbiting at the last stable orbit around a Kerr black hole with a spin parameter of the final black hole. The formula we obtain is able to reproduce with reasonable accuracy the results from available numerical simulations, but, more importantly, it can be used to investigate what configurations might give rise to interesting dynamics. In particular, we discuss scenarios which might give rise to a flip in the direction of the total angular momentum of the system. By studying the dependence of the final spin upon the mass ratio and initial spins, we find that our simple approach suggests that it is not possible to spin-up a black hole to extremal values through merger scenarios irrespective of the mass ratio of the objects involved.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.