Abstract

We perform a set of 36 nonprecessing black-hole binary simulations with spins either aligned or counteraligned with the orbital angular momentum in order to model the final mass, spin, and recoil of the merged black hole as a function of the individual black hole spin magnitudes and the mass ratio of the progenitors. We find that the maximum recoil for these configurations is $V_{max}=526\pm23\,km/s$, which occurs when the progenitor spins are maximal, the mass ratio is $q_{max}=m_1/m_2=0.623\pm0.038$, the smaller black-hole spin is aligned with the orbital angular momentum, and the larger black-hole spin is counteraligned ($\alpha_1=-\alpha_2=1$). This maximum recoil is about $80\,km/s$ larger than previous estimates, but most importantly, because the maximum occurs for smaller mass ratios, the probability for a merging binary to recoil faster than $400\,km/s$ can be as large as $17\%$, while the probability for recoils faster than $250\, km/s$ can be as large as $45\%$. We provide explicit phenomenological formulas for the final mass, spin, and recoil as a function of the individual BH spins and the mass difference between the two black holes. Here we include terms up through fourth-order in the initial spins and mass difference, and find excellent agreement (within a few percent) with independent results available in the literature. The maximum radiated energy is $E_{\rm rad}/m\approx11.3\%$ and final spin $\alpha_{\rm rem}^{\rm max}\approx0.952$ for equal mass, aligned maximally spinning binaries.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call