Abstract
Feeding behavior is one of the critical welfare indicators of broilers. Hence, understanding feeding behavior can provide important information regarding the usage of poultry resources and insights into farm management. Monitoring poultry behaviors is typically performed based on visual human observation. Despite the successful applications of this method, its implementation in large poultry farms takes time and effort. Thus, there is a need for automated approaches to overcome these challenges. Consequently, this study aimed to evaluate the feeding time of individual broilers by a convolutional neural network-based model. To achieve the goal of this research, 1500 images collected from a poultry farm were labeled for training the You Only Look Once (YOLO) model to detect the broilers' heads. A Euclidean distance-based tracking algorithm was developed to track the detected heads, as well. The developed algorithm estimated the broiler's feeding time by recognizing whether its head is inside the feeder. Three 1-min labeled videos were applied to evaluate the proposed algorithm's performance. The algorithm achieved an overall feeding time estimation accuracy of each broiler per visit to the feeding pan of 87.3%. In addition, the obtained results prove that the proposed algorithm can be used as a real-time tool in poultry farms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.