Abstract
The distribution of fitness effects (DFE) characterizes the range of selection coefficients from which new mutations are sampled, and thus holds a fundamentally important role in evolutionary genomics. To date, DFE inference in primates has been largely restricted to haplorrhines, with limited data availability leaving the other suborder of primates, strepsirrhines, largely under-explored. To advance our understanding of the population genetics of this important taxonomic group, we here map exonic divergence in aye-ayes ( Daubentonia madagascariensis ) - the only extant member of the Daubentoniidae family of the Strepsirrhini suborder. We further infer the DFE in this highly-endangered species, utilizing a recently published high-quality annotated reference genome, a well-supported model of demographic history, as well as both direct and indirect estimates of underlying mutation and recombination rates. The inferred distribution is generally characterized by a greater proportion of deleterious mutations relative to humans, providing evidence of a larger long-term effective population size. In addition however, both immune-related and sensory-related genes were found to be amongst the most rapidly evolving in the aye-aye genome.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have