Abstract
BackgroundImage-guided adaptive brachytherapy shows the ability to deliver high doses to tumors while sparing normal tissues. However, interfraction dose delivery introduces uncertainties to high dose estimation, which relates to normal tissue toxicity. The purpose of this study was to investigate the high-dose regions of two applicator approaches in brachytherapy.MethodFor 32 cervical cancer patients, the CT images from each fraction were wrapped to a reference image, and the displacement vector field (DVF) was calculated with a hybrid intensity-based deformable registration algorithm. The fractional dose was then accumulated to calculate the position and the overlap of high dose (D2cc) during multiple fractions.ResultThe overall Dice similarity coefficient (DSC) of the deformation algorithm for the bladder and the rectum was (0.97 and 0.91). No significant difference was observed between the two applicators. However, the location of the intracavitary brachytherapy (ICBT) high-dose region was relatively concentrated. The overlap volume of bladder and rectum D2cc was 0.42 and 0.71, respectively, which was higher than that of interstitial brachytherapy (ISBT) (0.26 and 0.31). The cumulative dose was overestimated in ISBT cases when using the GEC-recommended method. The ratio of bladder and rectum D2cc to the GEC method was 0.99 and 1, respectively, which was higher than that of the ISBT method (0.96 and 0.94).ConclusionHigh-dose regions for brachytherapy based on different applicator types were different. The 3D-printed ICBT has better high-dose region consistency than freehand ISBT and hence is more predictable.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have