Abstract
Summary We propose as a tool for the estimation of stochastic volatility models two indirect inference estimators based on the choice of an autoregressive auxiliary model and an ARMA auxiliary model, respectively. These choices make the auxiliary parameter easy to estimate and at the same time allow the derivation of optimal indirect inference estimators. The results of some Monte Carlo experiments provide evidence that the indirect inference estimators perform well in finite sample, although less efficiently than Bayes and Simulated EM algorithms.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have