Abstract

This paper describes how importance sampling can be applied to estimate likelihoods for spatio-temporal stochastic models of epidemics in plant populations, where observations consist of the set of diseased individuals at two or more distinct times. Likelihood computation is problematic because of the inherent lack of independence of the status of individuals in the population whenever disease transmission is distance-dependent. The methods of this paper overcome this by partitioning the population into a number of sectors and then attempting to take account of this dependence within each sector, while neglecting that between-sectors. Application to both simulated and real epidemic data sets show that the techniques perform well in comparison with existing approaches. Moreover, the results confirm the validity of likelihood estimates obtained elsewhere using Markov chain Monte Carlo methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.