Abstract
This study investigated the performance of multiple imputations with Expectation-Maximization (EM) algorithm and Monte Carlo Markov chain (MCMC) method in missing data imputation. We compared the accuracy of imputation based on some real data and set up two extreme scenarios and conducted both empirical and simulation studies to examine the effects of missing data rates and number of items used for imputation. In the empirical study, the scenario represented item of highest missing rate from a domain with fewest items. In the simulation study, we selected a domain with most items and the item imputed has lowest missing rate. In the empirical study, the results showed there was no significant difference between EM algorithm and MCMC method for item imputation, and number of items used for imputation has little impact, either. Compared with the actual observed values, the middle responses of 3 and 4 were over-imputed, and the extreme responses of 1, 2 and 5 were under-represented. The similar patterns occurred for domain imputation, and no significant difference between EM algorithm and MCMC method and number of items used for imputation has little impact. In the simulation study, we chose environmental domain to examine the effect of the following variables: EM algorithm and MCMC method, missing data rates, and number of items used for imputation. Again, there was no significant difference between EM algorithm and MCMC method. The accuracy rates did not significantly reduce with increase in the proportions of missing data. Number of items used for imputation has some contribution to accuracy of imputation, but not as much as expected.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.