Abstract

In recent years, rapid development has been achieved in technologies and sensors related to autonomous driving and assistive technologies. In this study, low-cost light detection and ranging (LiDAR) was used to estimate leaf water content (LWC) by measuring LiDAR reflectance instead of morphological measurement (e.g., plant size), which is the conventional method. Experimental results suggest that reflection intensity can be corrected using the body temperature of LiDAR, when using reflection intensity observed by LiDAR. Comparisons of corrected LiDAR observation data and changes in reflectance attributed to leaf drying suggest that the reflectance increases with leaf drying in the 905 nm band observed with a hyperspectral camera. The LWC is estimated with an R2 of 0.950, RMSE of 6.78%, and MAPE of 18.6% using LiDAR reflectance. Although the 905 nm wavelength used by LiDAR is not the main water absorption band, the reflectance is closely related to the leaf structure; therefore, it is believed that the reflectance changes with structural changes accompanying drying, which allows for the indirect estimation of LWC. This can help utilize the reflectance of the 905 nm single-wavelength LiDAR, which, to the best of our knowledge has not been used in plant observations for estimating LWC.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.