Abstract
While ground meteorological stations provide accurate snow depth data, their limited spatial coverage results in observational gaps. Satellites offer long-term, large-scale observations, addressing these gaps. Existing snow depth retrieval algorithms mainly use passive microwave remote sensing data with a 25 km resolution, insufficient for capturing snow depth variability in mountainous areas. This paper introduces active microwave backscatter data and machine learning techniques for high-resolution snow depth estimation. We conducted a preliminary exploration of the relationship between Sentinel-1 backscatter coefficient σ0 and snow depth. Due to factors such as vegetation coverage and underlying soil properties, the relationship between σ0 and snow depth is complex and nonlinear. Consequently, six machine learning models were trained to learn this relationship using σ0 and auxiliary data as input features, with in-situ snow depth serving as the target variable. After extensive validation, the Extreme Random Trees (ERT) model was selected for its high accuracy and stability. Using the ERT model, we generated 500 m-resolution snow depth data for northern hemisphere mountains, then analyzed temporal snow depth variations and altitudinal stratification.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.