Abstract
Summary Unsaturated flow modelling is increasingly being used to estimate potential groundwater recharge. A review of previous studies found that unit-gradient and fixed water table lower boundary conditions have been applied to models of both constant and variable vertical grid spacing (discretization). In order to provide a general guidance, this work studies the effect of both discretization and boundary conditions on simulation times and estimated fluxes at the water table, using one-dimensional models of 2, 4, 6, and 12 m comprised of sand, sandy loam, loamy sand, and loam. The study uses climatological data from the Boreal Plain of northern Alberta, Canada. Because of the long-term average water deficit and the thick unconsolidated glacial deposits, unsaturated flow is expected to be vertical, both downward and upward, and inter-annual changes in water storage will be important. Long-term simulations (1919–2007) that comprised both wet and dry cycles, reveal that when a variable vertical discretization at both the top and bottom of the columns (varying from 0.1 to 10 cm) is utilized, a balance between simulation accuracy and running time can be achieved. It is also found that whenever the unsaturated flow modelling approach is used to estimate potential groundwater recharge, a fixed-head lower boundary condition should be selected because it also allows upward flux from the water table during dry periods, a situation that prevails on both sub-humid and semi-arid areas, where accurate groundwater recharge estimates are needed the most. However, it should be kept in mind that the use of a fixed water table is a simple representation of the regional water table, which in reality interacts with the regional groundwater flow and surface water bodies (e.g., lakes and wetlands).
Paper version not known (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have