ABSTRACTForest parameters, such as mean diameter at breast height (DBH), mean stand height (H) or volume per hectare (V), are imperative for forest resources assessment. Traditional forest inventory that is usually based on fieldwork is often difficult, time-consuming, and expensive to conduct over large areas. Therefore, estimating forest parameters in large areas using a traditional inventory approach combined with satellite data analysis can improve the spatial estimates of forest inventory data, and hence be useful for sustainable forest management and natural resources assessment. However, extracting practical information from satellite imagery for such purpose is a challenging task mainly because of insufficient knowledge linking forest inventory data to satellite spectral response. Here, we present the use of a cost-free Landsat-7 Enhanced Thematic Mapper Plus (ETM+) in order to explore whether it is possible to combine all available optical bands from a specific sensor for improving forest parameter spatial estimates, based on fieldwork at Lahav and Kramim Forests, in the Israeli Northern Negev. A generic strategy, based on morphological structuring element, convex hall and spectral band linear combination algorithms, was developed in order to extract the mathematical dependencies between the forest inventory measurements and linear combination sets of Landsat-7 ETM+ spectral bands, which yields the highest possible correlation with the forest inventory measured data. Using the mathematical dependency functions, we then convert the entire Landsat-7 ETM+ scenes into forest inventory parameter values with sufficient accuracy and tolerance errors needed for sustainable forest management. The root mean square error obtained between the measured and the estimated values for Lahav Forest are 0.70 cm, 0.29 m, and 1.48 m3 ha−1 for the mean DBH, H, and V, respectively, and for Kramim forest are 0.61 cm, 0.70 m, and 6.31 m3 ha−1, respectively. Furthermore, the suggested strategy could also be applied with other satellites data sources.

Full Text

Published Version
Open DOI Link

Get access to 115M+ research papers

Discover from 40M+ Open access, 2M+ Pre-prints, 9.5M Topics and 32K+ Journals.

Sign Up Now! It's FREE

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call