Abstract

The measurements of tree attributes required for forest monitoring and management planning, e.g., National Forest Inventories, are derived by rather time-consuming field measurements on sample plots, using calipers and measurement tapes. Therefore, forest managers and researchers are looking for alternative methods. Currently, terrestrial laser scanning (TLS) is the remote sensing method that provides the most accurate point clouds at the plot-level to derive these attributes from. However, the demand for even more efficient and effective solutions triggers further developments to lower the acquisition time, costs, and the expertise needed to acquire and process 3D point clouds, while maintaining the quality of extracted tree parameters. In this context, photogrammetry is considered a potential solution. Despite a variety of studies, much uncertainty still exists about the quality of photogrammetry-based methods for deriving plot-level forest attributes in natural forests. Therefore, the overall goal of this study is to evaluate the competitiveness of terrestrial photogrammetry based on structure from motion (SfM) and dense image matching for deriving tree positions, diameters at breast height (DBHs), and stem curves of forest plots by means of a consumer grade camera. We define an image capture method and we assess the accuracy of the photogrammetric results on four forest plots located in Austria and Slovakia, two in each country, selected to cover a wide range of conditions such as terrain slope, undergrowth vegetation, and tree density, age, and species. For each forest plot, the reference data of the forest parameters were obtained by conducting field surveys and TLS measurements almost simultaneously with the photogrammetric acquisitions. The TLS data were also used to estimate the accuracy of the photogrammetric ground height, which is a necessary product to derive DBHs and tree heights. For each plot, we automatically derived tree counts, tree positions, DBHs, and part of the stem curve from both TLS and SfM using a software developed at TU Wien (Forest Analysis and Inventory Tool, FAIT), and the results were compared. The images were oriented with errors of a few millimetres only, according to checkpoint residuals. The automatic tree detection rate for the SfM reconstruction ranges between 65% and 98%, where the missing trees have average DBHs of less than 12 cm. For each plot, the mean error of SfM and TLS DBH estimates is −1.13 cm and −0.77 cm with respect to the caliper measurements. The resulting stem curves show that the mean differences between SfM and TLS stem diameters is at maximum −2.45 cm up to 3 m above ground, which increases to almost +4 cm for higher elevations. This study shows that with the adopted image capture method, terrestrial SfM photogrammetry, is an accurate solution to support forest inventory for estimating the number of trees and their location, the DBHs and stem curve up to 3 m above ground.

Highlights

  • The assessment of spatial and temporal change of forest resources is an essential component of forest management and forest monitoring programs, and it is periodically realized with updated inventories [1]

  • This study aims to improve the understanding of the applicability of terrestrial structure from motion (SfM) photogrammetry for deriving, at the plot- and tree-level, the five measurements defined by [6] for terrestrial laser scanning (TLS): the digital terrain model (DTM), tree count, tree position, DBH, maximum measurable tree height, and stem curve

  • An independent accuracy assessment of image orientation is provided by the RMSEs of the check points (CPs), which are of the same order as for the ground control points (GCPs) in planimetry, and about 0.4 cm in the vertical direction (Table 3)

Read more

Summary

Introduction

The assessment of spatial and temporal change of forest resources is an essential component of forest management and forest monitoring programs, and it is periodically realized with updated inventories [1]. In the context of operational forest inventory and management, the most important plot-scale forest-related parameters are the number of trees, tree density, tree height, and the diameter-at-breast height (DBH, measured 1.30 m above ground) These are measured using clinometers (for the height), calipers and diameter tapes (for the DBH), depending on the thickness of the stem. Plot-based field inventory is labour-intensive, time- and money-consuming, and lacks the capacity to measure the forest structure beyond the sample plots and the tree shapes beyond the individual tree level. These used to be interpolated over the area of interest [6]. Field sampling measures are used either to calibrate or to validate forest variables derived from remote sensing data

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.