Abstract

The use of equivalent alkane carbon numbers (EACN) to characterize oils is important in surfactant-oil-water (SOW) systems. However, the measurement of EACN values is non-trivial and thus it becomes desirable to predict EACN values from structure. In this work, we present a simple linear model that can be used to estimate the EACN value of oils with known Abraham solute parameters. We used linear regression with leave-one-out cross validation on a dataset of N = 80 oils with known Abraham solute parameters to derive a general model that can reliably estimate EACN values based upon the Abraham solute parameters: E (the measured liquid or gas molar refraction at 20 °C minus that of a hypothetical alkane of identical volume), S (dipolarity/polarizability), A (hydrogen bond acidity), B (hydrogen bond basicity), and V (McGowan characteristic volume) with good accuracy within the chemical space studied (N = 80, R2 = 0.92, RMSE = 1.16, MAE = 0.90, p < 2.2 × 10−16). These parameters are consistent with those in other models found in the literature and are available for a wide range of compounds.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call