Abstract

Direct measurement of hand forces during assessment of manual materials handling is infeasible in most field studies and some laboratory studies (e.g., during patient handling). Therefore, this study proposed and evaluated the performance of a novel hand force estimation method based on ground reaction forces (GRFs) and body segment accelerations.Ten male subjects performed a manual lifting/carrying task while an optoelectronic motion tracking system measured 3D full body kinematics, a force plate measured 3D GRFs and an instrumented box measured 3D hand forces. The estimated 3D hand forces were calculated by taking the measured GRF vector and subtracting the force vectors due to weight and acceleration of all body segments.Root-mean-square difference (RMSD) between estimated and measured hand forces ranged from 11 to 27N. When ignoring the segment accelerations (just subtracting body weight from the GRFs), the hand force estimation errors were much higher, with RMSDs ranging from 21 to 101N. Future studies should verify the performance of the proposed hand force estimation method when using an ambulatory field measurement system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call