Abstract

Key points When standing and holding an earth‐fixed object, galvanic vestibular stimulation (GVS) can evoke upper limb responses to maintain balance.In the present study, we determined how these responses are affected by grip context (no contact, light grip and firm grip), as well as how they are co‐ordinated with the lower limbs to maintain balance.When GVS was applied during firm grip, hand and ground reaction forces were generated.The directions of these force vectors were co‐ordinated such that the overall body sway response was always aligned with the inter‐aural axis (i.e. craniocentric).When GVS was applied during light grip (< 1 N), hand forces were secondary to body movement, suggesting that the arm performed a mostly passive role.These results demonstrate that a minimum level of grip is required before the upper limb becomes active in balance control and also that the upper and lower limbs co‐ordinate for an appropriate whole‐body sway response. Vestibular stimulation can evoke responses in the arm when it is used for balance. In the present study, we determined how these responses are affected by grip context, as well as how they are co‐ordinated with the rest of the body. Galvanic vestibular stimulation (GVS) was used to evoke balance responses under three conditions of manual contact with an earth‐fixed object: no contact, light grip (< 1 N) (LG) and firm grip (FG). As grip progressed along this continuum, we observed an increase in GVS‐evoked hand force, with a simultaneous reduction in ground reaction force (GRF) through the feet. During LG, hand force was secondary to the GVS‐evoked body sway response, indicating that the arm performed a mostly passive role. By contrast, during FG, the arm became actively involved in driving body sway, as revealed by an early force impulse in the opposite direction to that seen in LG. We then examined how the direction of this active hand vector was co‐ordinated with the lower limbs. Consistent with previous findings on sway anisotropy, FG skewed the direction of the GVS‐evoked GRF vector towards the axis of baseline postural instability. However, this was effectively cancelled by the hand force vector, such that the whole‐body sway response remained aligned with the inter‐aural axis, maintaining the craniocentric principle. These results show that a minimum level of grip is necessary before the upper limb plays an active role in vestibular‐evoked balance responses. Furthermore, they demonstrate that upper and lower‐limb forces are co‐ordinated to produce an appropriate whole‐body sway response.

Highlights

  • Holding onto a solid object improves standing balance

  • These forces were systematically altered by grip type and head orientation, and were coordinated with ground reaction forces (GRF) to move the body in a direction intended to compensate for the vestibular perturbation

  • Does the magnitude and direction of the Galvanic vestibular stimulation (GVS)-evoked upper limb force depend upon grip context? We found that changes in hand grip altered the upper limb response both qualitatively and quantitatively

Read more

Summary

Introduction

Holding onto a solid object improves standing balance. This can be due to improved sensory information and/or mechanical support, depending upon the nature of the manual contact. Galvanic vestibular stimulation (GVS) has been shown to evoke upper limb responses when forced to use the arm for balance (Britton et al, 1993). During light grip (< 1N), the arm acts mainly as a sensory organ (Jeka & Lackner, 1994), which suggests that a firmer grip may be required to generate active responses to a vestibular perturbation Another aspect of the GVS-evoked balance response is its dependence on head orientation. Touching an earth-fixed object directly to the right preferentially stabilised baseline sway in the medio-lateral axis Under these circumstances, the GVS response direction became biased towards the antero-posterior axis.

Ethical approval
Results
Discussion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call