Abstract
In this paper, the term “depth of investigation” refers generically to the depth below which surface data are insensitive to the value of the physical property of the earth. Estimates of this depth for dc resistivity and induced polarization (IP) surveys are essential when interpreting models obtained from any inversion because structure beneath that depth should not be interpreted geologically. We advocate carrying out a limited exploration of model space to generate a few models that have minimum structure and that differ substantially from the final model used for interpretation. Visual assessment of these models often provides answers about existence of deeper structures. Differences between the models can be quantified into a depth of investigation (DOI) index that can be displayed with the model used for interpretation. An explicit algorithm for evaluating the DOI is presented. The DOI curves are somewhat dependent upon the parameters used to generate the different models, but the results are robust enough to provide the user with a first‐order estimate of a depth region below which the earth structure is no longer constrained by the data. This prevents overinterpretation of the inversion results. The DOI analysis reaffirms the generally accepted conclusions that different electrode array geometries have different depths of penetration. However, the differences between the inverted models for different electrode arrays are far less than differences in the pseudosection images. Field data from the Century deposit are inverted and presented with their DOI index.
Paper version not known (
Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have