Abstract

Because turbulent fluctuations in the atmospheric refractive index (n) at wavelength x are related to turbulent fluctuations in the temperature (t) and humidity (q) by n = A(x,P,T,9)t + B(x,P,T,Q)q, it is possible to estimate the refractive index structure parameter C in the atmospheric surface layer from meteorological quantities. I describe two such estimation procedures, one based on the velocity, temperature, and humidity scales u*' t*, and q*, and a second based on the routine meteorological quantities U,, T -Th, and %-Q,. Subscript h here denotes the wind speed (U,), temperature (TO, and humidity (Qh) at rVference height h; subscript s indicates the sUrface value. I tabulate the coefficients A and B as functions of λ, the atmospheric pressure (I)), and the ambient temperature (T) and humidity (Q) in four wavelength regions--visible (including near-infrared), an infrared window, near-millimeter, and radio. A sensitivity analysis of the two estimation procedures demonstrates that the accuracy of the Cn2 estimate is a strong function of the Bowen ratio (Bo), the ratio of sensible to latent heat flux at the surface. At two Bo values within the interval [-10,10], one dependent on λ and the other on enyironmental conditions, the uncertainty in the Cn2 estimate becomes infinite. I focus on C values over snow and sea ice, and my examples are for these surfaces, but the estimation procedures presented can be applied to any geophysical surface that is horizontally homogeneous.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.