Abstract
Human tissue samples are often mixtures of heterogeneous cell types, which can confound the analyses of gene expression data derived from such tissues. The cell type composition of a tissue sample may itself be of interest and is needed for proper analysis of differential gene expression. A variety of computational methods have been developed to estimate cell type proportions using gene-level expression data. However, RNA isoforms can also be differentially expressed across cell types, and isoform-level expression could be equally or more informative for determining cell type origin than gene-level expression. We propose a new computational method, IsoDeconvMM, which estimates cell type fractions using isoform-level gene expression data. A novel and useful feature of IsoDeconvMM is that it can estimate cell type proportions using only a single gene, though in practice we recommend aggregating estimates of a few dozen genes to obtain more accurate results. We demonstrate the performance of IsoDeconvMM using a unique data set with cell type-specific RNA-seq data across more than 135 individuals. This data set allows us to evaluate different methods given the biological variation of cell type-specific gene expression data across individuals. We further complement this analysis with additionalsimulations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.