Abstract
Data analysis for randomized trials including multi-treatment arms is often complicated by subjects who do not comply with their treatment assignment. We discuss here methods of estimating treatment efficacy for randomized trials involving multi-treatment arms subject to non-compliance. One treatment effect of interest in the presence of non-compliance is the complier average causal effect (CACE) (Angrist et al. 1996), which is defined as the treatment effect for subjects who would comply regardless of the assigned treatment. Following the idea of principal stratification (Frangakis & Rubin 2002), we define principal compliance (Little et al. 2009) in trials with three treatment arms, extend CACE and define causal estimands of interest in this setting. In addition, we discuss structural assumptions needed for estimation of causal effects and the identifiability problem inherent in this setting from both a Bayesian and a classical statistical perspective. We propose a likelihood-based framework that models potential outcomes in this setting and a Bayes procedure for statistical inference. We compare our method with a method of moments approach proposed by Cheng & Small (2006) using a hypothetical data set, and further illustrate our approach with an application to a behavioral intervention study (Janevic et al. 2003).
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have