Abstract

We computed four stand-level canopy stratum variables important for crown fire modelling – canopy cover, stand height, canopy base height and canopy bulk density – from forest inventory data. We modelled the relationship between the canopy variables and a set of common inventory parameters – site index, stem density, basal area, stand age or stand height – and number of prescribed burns. We used a logistic model to estimate canopy cover, a linear model to estimate the other canopy variables, and the information theoretic approach for model selection. Coefficients of determination across five forest groups were 0.72–0.91 for stand height, 0.36–0.83 for canopy base height, 0.39–0.80 for canopy cover, and 0.63–0.78 for canopy bulk density. We assessed crown fire potential (1) for several sets of environmental conditions in all seasons, and (2) with increasing age, density and number of prescribed burns using our modelled canopy bulk density and canopy base height variables and local weather data to populate the Crown Fire Initiation and Spread model. Results indicated that passive crown fire is possible in any season in Atlantic coastal plain pine stands with heavy surface fuel loads and active crown fire is most probable in infrequently burned, dense stands at low fuel moistures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call