Abstract

The current energy requirements of buildings comprise a large percentage of the total energy consumed around the world. The demand of energy, as well as the construction materials used in buildings, are becoming increasingly problematic for the earth's sustainable future, and thus have led to alarming concern. The energy efficiency of buildings can be improved, and in order to do so, their operational energy usage should be estimated early in the design phase, so that buildings are as sustainable as possible. An early energy estimate can greatly help architects and engineers create sustainable structures. This study proposes a novel method to estimate building energy consumption based on the ELM (Extreme Learning Machine) method. This method is applied to building material thicknesses and their thermal insulation capability (K-value). For this purpose up to 180 simulations are carried out for different material thicknesses and insulation properties, using the EnergyPlus software application. The estimation and prediction obtained by the ELM model are compared with GP (genetic programming) and ANNs (artificial neural network) models for accuracy. The simulation results indicate that an improvement in predictive accuracy is achievable with the ELM approach in comparison with GP and ANN.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call