Abstract
AbstractFor the purposes of long-term planning and budgeting, infrastructure user cost allocation, and financial need forecasts, infrastructure agencies seek knowledge of the annual expenditure levels for maintaining their assets. Often, this information is expressed in dollars per unit dimension of the infrastructure and is estimated using observed data from historical records. This paper presents an artificial neural network (ANN) approach for purposes of estimating annual expenditures on infrastructure maintenance and demonstrates the application of the approach using a case study involving rural interstate highway pavements. The results of this exploratory study demonstrate that not only is it feasible to use ANN to derive reliable predictions of annual maintenance expenditures (AMEX) at aggregate level, but also it is possible to identify the influential factors of such expenditures and to quantify the sensitivity of AMEX to such factors.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have