Abstract

This paper considers multiple changes in the factor loadings of a high dimensional factor model occurring at dates that are unknown but common to all subjects. Since the factors are unobservable, the problem is converted to estimating and testing structural changes in the second moments of the pseudo factors. We consider both joint and sequential estimation of the change points and show that the distance between the estimated and the true change points is Op(1). We find that the estimation error contained in the estimated pseudo factors has no effect on the asymptotic properties of the estimated change points as the cross-sectional dimension N and the time dimension T go to infinity jointly. No N-T ratio condition is needed. We also propose (i) tests for no change versus l changes (ii) tests for l changes versus l+1 changes, and show that using estimated factors asymptotically has no effect on their limit distributions if T∕N→0. These tests allow us to make inference on the presence and number of structural changes. Simulation results show good performance of the proposed procedure. In an application to US quarterly macroeconomic data we detect two possible breaks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.