Abstract

We study estimation and inference in cointegrated regression models with multiple structural changes allowing both stationary and integrated regressors. Both pure and partial structural change models are analyzed. We derive the consistency, rate of convergence and the limit distribution of the estimated break fractions. Our technical conditions are considerably less restrictive than those in Bai et al. [Bai, J., Lumsdaine, R.L., Stock, J.H., 1998. Testing for and dating breaks in multivariate time series. Review of Economic Studies 65, 395–432] who considered the single break case in a multi-equations system, and permit a wide class of practically relevant models. Our analysis is, however, restricted to a single equation framework. We show that if the coefficients of the integrated regressors are allowed to change, the estimated break fractions are asymptotically dependent so that confidence intervals need to be constructed jointly. If, however, only the intercept and/or the coefficients of the stationary regressors are allowed to change, the estimates of the break dates are asymptotically independent as in the stationary case analyzed by Bai and Perron [Bai, J., Perron, P., 1998. Estimating and testing linear models with multiple structural changes. Econometrica 66, 47–78]. We also show that our results remain valid, under very weak conditions, when the potential endogeneity of the non-stationary regressors is accounted for via an increasing sequence of leads and lags of their first-differences as additional regressors. Simulation evidence is presented to assess the adequacy of the asymptotic approximations in finite samples.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.